Silicon photonics manufacturing.

نویسندگان

  • William A Zortman
  • Douglas C Trotter
  • Michael R Watts
چکیده

Most demonstrations in silicon photonics are done with single devices that are targeted for use in future systems. One of the costs of operating multiple devices concurrently on a chip in a system application is the power needed to properly space resonant device frequencies on a system's frequency grid. We asses this power requirement by quantifying the source and impact of process induced resonant frequency variation for microdisk resonators across individual die, entire wafers and wafer lots for separate process runs. Additionally we introduce a new technique, utilizing the Transverse Electric (TE) and Transverse Magnetic (TM) modes in microdisks, to extract thickness and width variations across wafers and dice. Through our analysis we find that a standard six inch Silicon on Insulator (SOI) 0.35 μm process controls microdisk resonant frequencies for the TE fundamental resonances to within 1 THz across a wafer and 105 GHz within a single die. Based on demonstrated thermal tuner technology, a stable manufacturing process exhibiting this level of variation can limit the resonance trimming power per resonant device to 231 μW. Taken in conjunction with the power to compensate for thermal environmental variations, the expected power requirement to compensate for fabrication-induced non-uniformities is 17% of that total. This leads to the prediction that thermal tuning efficiency is likely to have the most dominant impact on the overall power budget of silicon photonics resonator technology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photonic Systems for Crystalline Silicon and Thin-Film Photovoltaic Manufacturing

In this chapter, we will discuss the impact that photonics have on photovoltaic (PV) manufacturing. The broad field of photonics is now commonly thought to encompass classical optics (Hecht, 2001), nanophotonics (Joannopoulos et al., 2007), and metamaterials (Cai and Shalaev, 2009). Over the last few decades, photonic technology has become an increasingly integral part of PV manufacturing, both...

متن کامل

Can silicon change photonics?

The electronic chip industry embodies the height of technological sophistication and economics of scale. The industry mass produces complex circuitry, boasting over one billion components at such low cost that they appear in consumer products. Fabricating inexpensive photonic components by leveraging this mighty manufacturing infrastructure has been the impetus behind the development of silicon...

متن کامل

CMOS compatible high-Q photonic crystal nanocavity fabricated with photolithography on silicon photonic platform

Progress on the fabrication of ultrahigh-Q photonic-crystal nanocavities (PhC-NCs) has revealed the prospect for new applications including silicon Raman lasers that require a strong confinement of light. Among various PhC-NCs, the highest Q has been recorded with silicon. On the other hand, microcavity is one of the basic building blocks in silicon photonics. However, the fusion between PhC-NC...

متن کامل

Low energy silicon on insulator ion implanted gratings for optical wafer scale testing

Silicon photonics shows tremendous potential for the development of the next generation of ultra fast telecommunication, tera-scale computing, and integrated sensing applications. One of the challenges that must be addressed when integrating a "photonic layer" onto a silicon microelectronic circuit is the development of a wafer scale optical testing technique, similar to that employed today in ...

متن کامل

3-D Integration of sub-surface Photonics with CMOS

The integration of photonics and electronics on a single silicon substrate requires technologies that can add optical functionalities without significantly sacrificing valuable wafer area. To this end, we have developed an innovative fabrication process, called SIMOX 3-D Sculpting, that enables monolithic optoelectronic integration in a manner that does not compromise the economics of CMOS manu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics express

دوره 18 23  شماره 

صفحات  -

تاریخ انتشار 2010